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The long-time behavior of certain fast-decaying infinite temperature correlation
functions on one-, two-, and three-dimensional lattices of classical spins with
various kinds of nearest-neighbor interactions is studied numerically, and evi-
dence is presented that the functional form of this behavior is either simple
exponential or exponential multiplied by cosine. Due to the fast characteristic
timescale of the long-time decay, such a universality cannot be explained on the
basis of conventional Markovian assumptions. It is suggested that this behavior
is related to the chaotic properties of the spin dynamics.
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1. INTRODUCTION

We perform a numerical study of the long-time behavior of infinite tem-
perature correlation functions defined on an infinite lattice of classical
spins as:

G(t)=7Sx
k(t) C

n
cos(q · rkn) Sx

n (0)8 , (1)

where Sm
k is the mth (x, y, or z) spin component on the kth lattice site; rkn is

the translation vector between the kth and the nth sites; and q is a wave
vector commensurate with the lattice periodicity. We consider three types



of lattices: a simple one-dimensional chain, a two-dimensional square
lattice, and a three-dimensional cubic lattice. In each case, the dynamical
evolution of the system is driven by the nearest-neighbor interaction repre-
sented by the Hamiltonian

H=C
k, n

[JxSx
kSx

n +JySy
kSy

n +JzS
z
kSz

n], (2)

where Jm are coupling constants. With such a Hamiltonian, the timescale of
the individual spin motion referred to below as the ‘‘mean free time’’ can
be given by the time y=[1

3NS2(J2
x+J2

y+J2
z )]−1/2, where N is the number

of the nearest neighbors (twice the number of the lattice dimensions).
In the context of inelastic neutron scattering, correlation functions (1)

are called ‘‘intermediate structure factors.’’ (1) If q=0, Eq. (1) can also
represent the free induction decay in nuclear magnetic resonance (NMR). (2)

In this work, we provide extensive numerical evidence that the generic
long-time behavior of G(t) has one of the following two functional forms:
either

G(t) 4 e−tt, (3)

or

G(t) 4 e−tt cos(gt+f), (4)

where the constants t and g are of the order of 1/y.
It is important to realize that, if the above functional form of the long-

time behavior is, indeed, generic (i.e., independent of the specific details of
interaction), then this property is very likely related to the randomness
generated by the spin dynamics. At the same time, the problem cannot be
reduced to the Markovian paradigm of ‘‘a slow variable interacting with
a fast equilibrating background’’—the characteristic timescale y in Eqs. (3)
and (4) is not ‘‘slow.’’ It is, in fact, the fastest natural timescale of the
problem. Therefore, whatever is the ultimate explanation of that behavior,
it will certainly be a step beyond the standard theory of Brownian-type
motion.

Our interest in the long-time behavior of the correlation functions (1)
was originally motivated by two isolated pieces of evidence supporting the
oscillatory behavior (4) in quantum (spin 1/2) systems: (i) experiments on
NMR free induction decay in CaF2

(3) and (ii) the results of numerical
diagonalization of spin 1/2 chains. (4) In the both cases, quantities analo-
gous to the one defined by Eq. (1) have been measured or computed, and
the results look very similar to the plots shown in the left column of Fig. 1.
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We came to recognize the importance of a detailed study of the clas-
sical limit, when, in an attempt to explain the long-time relaxation in
quantum spin systems, we developed a theory that turned out to be simul-
taneously applicable to classical spins. That theory is presented in a differ-
ent paper (5) which has been written simultaneously with the present one.
The present paper is mainly numerical: it is not intended to be a brief
exposition of ref. 5. Below, we only provide the summary of the results
from ref. 5.

The theory developed in ref. 5 describes long-time relaxation as a
correlated diffusion in finite volumes. In the classical case, those finite
volumes correspond to the spherical surfaces on which the tips of classical
spin vectors move, while in the quantum case, the finite volumes originate
from a more sophisticated construction in Hilbert space. The overall structure
of such a treatment has noticeable parallels with the theory of Pollicott–
Ruelle resonances in classical chaotic systems. (6, 7) A definite prediction
from the correlated diffusion description is that the functional form of the
long-time relaxation should be given by Eqs. (3) and (4).

The important part of the above theory is not the diffusion description
itself but the reason why it is applicable, given the ‘‘non-Markovian’’
relaxation timescale. The theory is based on the fairly strong conjecture
that, for a broad class of many-body systems, a formal extension of the
Brownian-like description applies to the the long-time behavior of the
ensemble average quantities, even when the problem exhibits no separation
of the timescales between the slow and the fast motions.

Before proceeding with the description of the simulations, it should
be mentioned that, for the classical spin systems at infinite temperature,
the long-time behavior of the q-dependent correlation functions (1)
decaying on the timescale of y has never been addressed. The closest to
this subject was the work of de Alcantara Bonfim and Reiter, (8) who
considered the Heisenberg spin chain and focused on the long-time
behavior of correlation functions (1) with small q. Those correlation
functions, however, are not typical for our purposes, because, as a con-
sequence of the total spin conservation, they decay on the timescale,
which is much longer than the characteristic timescale of one-spin
motion. In that situation, the hypothesis of spin diffusion (9) would lead
to the prediction of nearly exponential decay with the decay constant
proportional to q2. The results of de Alcantara Bonfim and Reiter did
not cover the range of values, which would be sufficient to confirm or
rule out the exponential character of the long-time decay. However,
those results (in line with others (10, 11)) indicated that, if, the spin diffu-
sion regime exists for classical spin chains, the approach to that regime is
anomalously slow.
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The present work includes one example of the Heisenberg interaction,
just to show that this case does not appear to be special with respect to the
long-time property (3) and (4).

2. SIMULATIONS

Our computational strategy was similar to that of Müller. (10) Namely,
we did not deal with very large systems but, instead, performed an
ensemble averaging over a large number of finite, but not too small, lattices
having periodic boundary conditions. The finite size effects were then con-
trolled by varying the size of the lattice.

For a given lattice size, many computational runs have thus been per-
formed. Each of them started from completely random initial conditions
(corresponding to the infinite temperature) and generated the evolution
of the system over a time interval two orders of magnitude longer than
the mean free time y (see Table I for specific numbers). The correlation

Table I. Simulation Parameters and the Long-Time Fits Corresponding to the Plots

Presented in Fig. 1. The Numbers in the Right Four Columns Characterize Each of the

Four Data Sets Superimposed in the Corresponding Frame

Lattice dimensions Time length Discretization
Frame Number of each run, time step,
label Size 1 Size 2 of runs [(JS)−1] [(JS)−1]

(a) 19 15 500000 320 0.02
(b) 19 15 500000 320 0.02
(c) 40 24 160000 320 0.02
(d) 10 × 10 7 × 7 60000 100 0.0025
(e) 10 × 10 7 × 7 80000 170 0.01
(f ) 12 × 8 8 × 4 60000 100 0.0025
(g) 5 × 5 × 5 4 × 4 × 3 80000 170 0.005
(h) 5 × 5 × 5 4 × 4 × 3 80000 170 0.005

Frame Long-time fit
label (time units, [(JS)−1])

(a) 2.25 exp(−0.585t) cos(1.93t+0.31)
(b) 0.23 exp(−0.357t)
(c) 0.30 exp(−0.588t) cos(1.46t − 1.19)
(d) 0.40 exp(−0.645t)
(e) 1.20 exp(−1.031t) cos(3.06t − 0.82)
(f ) 0.88 exp(−0.488t)
(g) 1.00 exp(−1.299t) cos(3.70t − 0.82)
(h) 1.70 exp(−0.426t)

322 Fine



functions were then obtained by averaging the data within each run and
over different runs.

The following algorithm has been used in order to simulate the evolu-
tion of the system.

At each time step, the spins were advanced sequentially in such a way
that, if the spin number k interacted with the spin number n, and the kth
spin was advanced first, then the new coordinates of the nth spin were
computed based on the local field created by the already advanced kth
spin.

The procedure for advancing a given (kth) spin to the next point along
the discrete time grid consisted of two steps.

Step 1. The coordinates of the kth spin were changed by dSk

according to the straightforward discretization of the equations of motion,
i.e.,

dSk=[Sk × hk] dt, (5)

where hk was the local field equal to ;n.n.
n [JxSx

n êx+JySy
n êy+JzS

z
n êz] (sum

over the nearest neighbors of the kth spin); and dt was the discretization
time step.

Step 2. The higher order errors that changed the length of the spin
vector were eliminated. This was done by contracting the spin component
perpendicular to the local field, so that it took the absolute value it had
before Step 1.

The whole manipulation could not change the spin projection parallel
to the local field and, therefore, the energy of interaction of that spin with
its neighbors. Since the next spin was advanced in the newly updated local
field, the energy of the whole system was conserved exactly during the
entire integration. Apart from ensuring meaningful behavior of the com-
puted trajectories, the exact conservation of energy substantially improved
the convergence of the algorithm with respect to the limit dt Q 0.

In our simulations, the discretization time steps (given in Table I) were
admitted as sufficient when their further reduction appeared to have no
effect on the computed correlation functions. We also checked that the
averaging over a larger number of much shorter runs led to results consis-
tent with the longer runs we used.

The time lengths of the runs indicated in Table I were chosen to
optimize the resulting efficiency of averaging: too short runs (of the order
of the time length of the computed correlation function) did not make
many independent contributions to the correlation functions, while too
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long runs did not improve the quality of the averaging proportionally to
their length.

3. RESULTS

The results of our simulations for different dimensions, interaction
constants, and wave numbers are presented in Fig. 1, (12) together with the
long-time theoretical fits based on either Eqs. (3) or (4). Since we aimed at
demonstrating the exponential character of the long-time behavior, it was
natural to use a logarithmic scale for G(t). However, because in the half of
the cases, G(t) was also oscillating, we chose to show the logarithmic plots
for the absolute value of G(t), which explains the cusps in the left column
of plots in Fig. 1. Those cusps correspond to the points where G(t) crosses
zero. The reason that the cusp minima do not reach − . is that a discrete
grid was used.

The selection of parameters for the simulations was subject to certain
practical constraints: The computed correlation functions could be con-
sidered reliable only within quite a limited range along both the t- and
Log(G(t))-axes. Therefore, we avoided the correlation functions that
reached too-small values too fast, or, on the contrary, decayed too slowly.

From our experience, the finite size effects were least pronounced for
correlation functions with q=0. For this reason, q was chosen to be zero in
most examples presented in Fig. 1.

Since the long-time behavior of the correlation functions was only
marginally accessible with our computational resources, we present the
results in substantial detail, thus making clear the uncertainties associated
with insufficient ensemble averaging and finite size effects. Each of the
correlation functions presented in Fig. 1 was computed four times: two
statistically independent averaging results for each of two different lattice
sizes. ‘‘Two statistically independent averaging results’’ means that, in each
case, the same number of sample runs was performed but two different sets
of random numbers were used for setting the initial orientations of spins.
Each frame in that figure thus contains a superposition of four plots. The
time interval where these plots do not deviate from each other can be
considered as representing the limit of infinite lattice size with sufficient
ensemble averaging.

The finite size effects are not evident in any of the examples shown in
Fig. 1—in every case, the plots representing different simulation outcomes
do not deviate from each other before the statistical fluctuations for each
of the two lattice sizes become apparent.

Our experience indicates that further improvement in the accuracy of
the computed correlation functions would simultaneously require a finer
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Fig. 1. Correlation functions G(t) of the form (1) for 1D chain, 2D square lattice, and 3D
cubic lattice. The interaction coefficients and the wave numbers (in the units of inverse lattice
spacing) are indicated above the plots. The main frame of each figure shows the logarithmic
scale of the absolute value of G(t)/G(0), while the inset frame shows the direct plots of
G(t)/G(0) (with neither the logarithm nor the absolute value being taken). Within each frame,
the simulation results are presented by almost indistinguishable superposition of data for two
lattice sizes, and each size is represented by two statistically independent averaging results;
therefore, two solid lines for the larger size (Size 1) and two dash-dotted lines for the smaller size
(Size 2). The spread of the four lines indicates the computational uncertainty—it becomes visible
only in the lower right corner of each frame. The dashed lines in each figure are the long-time
theoretical fits of form (3) or (4). The numbers relevant to each data set are given in Table I.
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discretization, much more extensive ensemble averaging and, probably,
larger system sizes, i.e., much greater computational effort.

Summarizing the evidence, we observe that, with the marginal excep-
tion of Fig. 1(d), in every other case presented, there is an interval, covering
at least one decade of the values of G(t), where the simulation results agree
with the long-time fits (3) or (4). We would also like to point out that,
while in all cases the exponential behavior becomes pronounced quite early,
the long-time exponents in Figs. 1(e,g) describe almost the entire correla-
tion functions.

Thus our numerical results lend strong support to the idea expressed
in ref. 5, that a discrete spectrum of well-separated exponents describes the
long-time behavior of the correlation functions considered, with the slowest
of those exponents responsible for the asymptotic functional form given by
Eqs. (3) or (4). It is also very likely, though slightly less reliable, that in the
examples presented, our simulations revealed the slowest exponents. The
reservation here is for the possibility that even slower exponents could
enter the long-time expansion of G(t) with anomalously small coefficients.

4. CONCLUSIONS

In conclusion, we have presented a numerical evidence that the long-time
behavior of the correlation functions considered is exponential with or
without the oscillatory component. Leaving the details to ref. 5, here we just
mention that our best hope for the theoretical explanation of that behavior is
associated with the strong chaotic properties of the spin dynamics. Those
properties are likely to be quite generic, i.e., present in other systems.
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NOTE ADDED TO PROOF

After submitting this paper, the author became aware of a closely
related work of T. Prosen, (13) in which the decay of the correlation func-
tions defined on the lattices of quantum spins was interpreted in terms of
Pollicott–Ruelle resonances.
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